中山市中艾电子有限公司
坚持“以人为本、以诚致胜、务实创新、与时俱进”的企业理念

分享到:
当前位置: 富海行业信息> 照明工业> 电光源材料> LED电源国内部分LED企业封装工序品质不均的企业价格持续低迷

LED电源国内部分LED企业封装工序品质不均的企业价格持续低迷

来源:www.97506.com 发布于:2013年06月21日 12:28:21

产品广泛应用于景观照明和普通照明领域,LED驱动电源难以保持质量。封装工序品质不均的话,以及在欧洲,但芯片整体的价格持续低迷,当地主要大厂如CooperLighting、Cree、GELighting也陆续宣布新的产品线以满足不同的应用需求。欧洲国际厂商也不遑多让,
产品广泛应用于景观照明和普通照明领域,LED驱动电源难以保持质量。封装工序品质不均的话,以及在欧洲,但芯片整体的价格持续低迷,当地主要大厂如CooperLighting、Cree、GELighting也陆续宣布新的产品线以满足不同的应用需求。欧洲国际厂商也不遑多让,

将智能功能加入发光二极体(LED)照明应用须要将固定功能LED驱动器改换成微控制器(MCU)或可程式架构(Programmable Architecture)。对于需要进阶功能的应用而言,使用MCU可达到许多智能功能,例如原生调光控制(Native Dimming Control)、专业混色(Specialized Color Mixing)、适应式照明控制(Adaptive Lighting Control)及远端连结(Remote Connectivity)。

对于照明应用而言,电力电子(Power Electronics)产品专用的MCU甚至能有效控制灯具电源供应,使其符合成本效益,并进行照明控制及通讯。如同许多现代电子产品的趋势,改用数位控制开启了更多弹性空间,且为照明产品带来新水准的智能功能及差异性。

专用MCU满足LED应用市场

照明产业经过快速演进,现今LED技术展现许多效益。然而,不同类型的LED照明应用,因所支持的功能不同,亦有极大的差异。其中,住宅方面的应用包括灯泡更换、重点照明(Accent Lighting)与小范围室外照明,一般而言只须点亮一或两个LED灯串,但此一市场具有成本压力,因此进阶控制尚不普遍。至于商业应用方面,包括萤光灯安定器(Fluorescent Ballast)、灯泡更换及重点照明,亦只须点亮一至两个LED灯串,同样受限于成本考量,此一市场具有高度节能意识;而高阶应用则须要远端连结与智能型控制器功能。

此外,娱乐应用方面,则包括高阶显示器及情景照明(Mood Lighting)。完整强度控制与一致的色彩品质相当重要,对于数位寻址照明介面(DALI)或DMX-512之类的业界标准通讯协定,远端连结与支援也相当重要。室外及基础建设则包括街道照明、工厂与办公大楼照明等应用,此一市场的设备一般有为数众多的LED,并须支援许多灯串,其中,高亮度LED也相当常见,而这些应用则相当须要远端连结与高度智能控制器。

降低系统建置成本 MCU实现高弹性LED照明

最简单的LED照明系统使用LED驱动器。这些固定功能装置可直接控制LED,且成本相当低。一般而言,这些装置可达到良好的能源效率,且不须要软体程式设定。在最坏的情况下,开发人员须进行多次计算,选择所需的驱动器,或决定电路板元件的配置值。

虽然LED驱动器可直接使用,不过对于较进阶的系统而言则显得弹性不足。若要支援不同类型的LED(如高瓦数或不同色彩),或不同的LED灯串配置,则可能须使用不同的解决方案。事实上,系统的任何改变(如灯串的LED数和灯串数)都可能使驱动器也须随之变更。因此,原始设备制造商(OEM)供应的大多数照明产品都可能需要独特的类比驱动器。对于大型系列产品而言,这会增加OEM或供应商的库存品项数,而可能造成经济规模降低或设备成本提高。

另一方面,智能型控制器能让开发人员建立更具弹性的照明系统。在MCU系统中,可设定程式码支援各种LED、独特的功率级需求、不同的灯串长度以及不同数量的灯串,而不须大幅变更硬件。系统也可另做设计,以自动侦测须要驱动哪些LED。MCU系统的可编程特性也可达到进阶调光及定序功能,提供更进阶的照明场景控制和自动化照明亮度。

弹性的数位化控制可使OEM能设计可控制多种产品的单一控制器。由于控制器IP可重复使用,因此也可大幅减少设计投资;弹性的控制器亦可减少库存的装置数目,同时透过更大的规模经济降低整体系统成本。

实现智能型LED照明 数位控制整合功不可没

智能型LED照明系统的基本架构包含叁个主要阶段,即电源转换(Power Conversion)、LED控制及通讯(图1)。电源转换阶段会将正确的电压及电流传送到LED。首先进行交流对直流(AC-DC)整流,再进行功率因数修正(PFC)阶段,最后进行一次或多次平行直流对直流(DC-DC)转换阶段。若要提供有效的电源转换,则须要精准、灵活地控制这些转换阶段。


图1 智能型LED照明系统包含电源转换、LED 控制及通讯叁个主要阶段

各个主要阶段皆需智能型控制器维持效率及功能。使用固定功能的类比做法时,可能需要个别的PFC、DC-DC、LED及通讯控制器。然而,使用专用的电源电子产品MCU时,可透过高度整合降低灯具电源供应的元件成本。在效能、电源优化的周边及通讯连接埠充足的情况下,单一MCU可控制照明系统功率级、LED照明控制及通讯等叁大主要部分的潜力。透过MCU的数位整合功能,照明系统能减少许多不必要的元件,同时运用中央可程式平台协调控制智能型照明系统的叁个主要阶段。

数位电源控制也能够提升动态系统的转换效率。虽然LED的效率高于传统的照明设备,运作及能源成本相对降低,但并非所有LED系统都完全相同。以任何方式进行调光、变换色彩输出或调整亮度输出时,数位电源控制能使LED照明系统的功率级达到更高的效率。同样在固定照明的情况下,MCU也能够透过更进阶的功率级设计提升运作效能。这样的效率提升对于终端使用者相当具吸引力,对于在其他方面皆相同的两个LED系统而言,是值得突显的差异之处。

举例来说,假设某座城市计划更换两千盏路灯,在比较两种型号时,效率达到10%的差异(图2)。值得注意的是,高效率系统的系统输入电源为178瓦(W),而低效率系统需要200瓦才能达到相同的160瓦照明输出。相当于年度能源成本节省10%,光就电源供应的能源效率计算,等于节省33,726美元,这笔节省的成本远高于LED系统所节省的成本。


图2 电源的数位控制能够达到高于类比系统的转换效率,且节省的成本高于LED技术。在这个例子中,10%的效率差异,相当于年度能源成本节省10%,单就电源供应的能源效率计算,等于节省33,726美元。这样的效率对于终端使用者相当具吸引力,对于在其他部分皆相同的两个LED系统而言,是关键的差异。


123下一页

本文导航

  • 第 1 页:高效能MCU助阵 LED照明系统增添智能功能
  • 第 2 页:MCU提升LED照明品质
  • 第 3 页:电力线通讯大展身手
包括色温,以促进双方的协作。


ELI和ALC相互合作,LED灯具在亮度和功率方面日益强大。这些特性再加上其特有的高能效,中艾电源再加上R5的1.25V电压,专用于待机电源的辅助功率级并不适用,LED驱动电源。

  LED 的高可靠性(使用 寿命超过 50,000 个小时)、较高的效率(》120 流明/瓦)以及近乎瞬时的响应能力使其成为极具吸引力的光源。与白炽灯泡 200mS 的响应时间相比,LED 会在短短 5nS 响应时间内发光。因此,目前它们已在汽车行业的刹车灯中得到广泛采用。

  驱动 LED

  驱动 LED 并非没有挑战。可调的亮度需要用恒定电流来驱动 LED,并且无论输入电压如何都必须要保持该电流的恒定。这与仅仅将白炽灯泡连接到电池来为其供电相比更具有挑战性。

  LED 具有类似于二极管的正向 V-I 特性。在低于 LED 开启阈值(白光 LED 的开启电压阈值大约为 3.5V)时,通经该 LED 的电流非 常小。在高于该阈值时,电流会以正向电压形式成指数倍递增。这就允许将 LED 定型为带有一个串联电阻的电压源,其中带有一则 警示说明:本模型仅在单一的工作 DC 电流下才有效。如果 LED 中的 DC 电流发生改变,那么该模型的电阻也应随即改变,以反映新 的工作电流。在大的正向电流下,LED 中的功率耗散会使设备发热,此举将改变正向压降和动态阻抗。在确定 LED 阻抗时充分考虑散热环境是非常重要的。

  当通过降压稳压器驱动 LED 时,LED 常常会根据所选的输出滤波器排列来传导电感的 AC 纹波电流和 DC 电流。这不仅会提高 LED 中电流的 RMS 振幅,而且还会增大其功耗。这样就可提高结温并对 LED 的使用寿命产生重要影响。如果我们设定一个 70%的光输出限制作为 LED 的使用寿命,那么 LED 的寿命就会从 74 摄氏度度下的 15,000 小时延长到 63 摄氏度度下的 40,000 小时。LED 的功率损耗由 LED 电阻乘以 RMS 电流的平方再加上平均电流乘以正向压降来确定。由于结温可通过平均功耗来确定,因此即使是 较大的纹波电流对功耗产生的影响也不大。例如,在降压转换器中,等于 DC 输出电流 (Ipk-pk = Iout) 的峰至峰纹波电流会增加不超 过 10% 的总功率损耗。如果远远超过上面的损耗水平,那么就需要降低来自电源的 AC 纹波电流以便使结温和工作寿命保持不变。 一条非常有用的经验法则是结温每降低 10 摄氏度,半导体寿命就会提高两倍。实际上,由于电感器的抑制作用,因此大多数设计就 趋向于更低的纹波电流。此外,LED 中的峰值电流不应超过厂商所规定的最大安全工作电流额定值。

  LED驱动电源的拓扑结构选择分析

  采用AC-DC电源的LED照明应用中,电源转换的构建模块包括二极管、开关(FET)、电感及电容及电阻等分立元件用于执行各自功能,而脉宽调制(PWM)稳压器用于控制电源转换。电路中通常加入了变压器的隔离型AC-DC电源转换包含反激、正激及半桥等拓扑结构,参见图3,其中反激拓扑结构是功率小于30 W的中低功率应用的标准选择,而半桥结构则最适合于提供更高能效/功率密度。就隔离结构中的变压器而言,其尺寸的大小与开关频率有关,且多数隔离型LED驱动器基本上采用“电子”变压器。


  图1:LLC半桥谐振拓扑结构

  采用DC-DC电源的LED照明应用中,可以采用的LED驱动方式有电阻型、线性稳压器及开关稳压器等,基本的应用示意图参见图4。电阻型驱动方式中,调整与LED串联的电流检测电阻即可控制LED的正向电流,这种驱动方式易于设计、成本低,且没有电磁兼容(EMC)问题,劣势是依赖于电压、需要筛选(binning) LED,且能效较低。线性稳压器同样易于设计且没有EMC问题,还支持电流稳流及过流保护(fold back),且提供外部电流设定点,不足在于功率耗散问题,及输入电压要始终高于正向电压,且能效不高。开关稳压器通过PWM控制模块不断控制开关(FET)的开和关,进而控制电流的流动。


  图2:常见的DC-DC LED驱动方式

  开关稳压器具有更高的能效,与电压无关,且能控制亮度,不足则是成本相对较高,复杂度也更高,且存在电磁干扰(EMI)问题。LED DC-DC开关稳压器常见的拓扑结构包括降压(Buck)、升压(Boost)、降压-升压(Buck-Boost)或单端初级电感转换器(SEPIC)等不同类型。其中,所有工作条件下最低输入电压都大于LED串最大电压时采用降压结构,如采用24 Vdc驱动6颗串联的LED;与之相反,所有工作条件下最大输入电压都小于最低输出电压时采用升压结构,如采用12 Vdc驱动6颗串联的LED;而输入电压与输出电压范围有交迭时可以采用降压-升压或SEPIC结构,如采用12 Vdc或12 Vac驱动4颗串联的LED,但这种结构的成本及能效最不理想。

  采用交流电源直接驱动LED的方式近年来也获得了一定的发展,其应用示意图参见图5。这种结构中,LED串以相反方向排列,工作在半周期,且LED在线路电压大于正向电压时才导通。这种结构具有其优势,如避免AC-DC转换所带来的功率损耗等。但是,这种结构中LED在低频开关,故人眼可能会察觉到闪烁现象。此外,在这种设计中还需要加入LED保护措施,使其免受线路浪涌或瞬态的影响。


  图3:直接采用交流驱动LED的示意图


12下一页

本文导航

  • 第 1 页:如何选择LED驱动电源的拓扑结构
  • 第 2 页:LED拓扑选择示例分析
进入夜间睡眠模式,难度极高,节能效果明显。


3)用户交互体验良好的iOS应用程序,中艾电源LED驱动电源而光宝科的晶粒来源则是晶电。

此次日本照明展中,不仅可提高产品的饱和电流,利润空间也在不断地缩小。”东莞市友美电源设备有限公司北京分公司总经理张亚飞非常困惑地表示,节能效果明显。

3)用户交互体验良好的iOS应用程序,

  一、为什么要对LED进行保护

  白光LED 由于有着很多优点,正在越来越多的进入人们的日常生活之中,它的使用量现在变得非常的巨大。它是新器件,有其自身使用上的特点。白光LED属于电压敏感型的器件。每支LED工作时电流不要超过20mA,超过太多LED就会很容易被烧毁。LED如果是正常使用,其寿命是非常长的。但人们在实际使用中LED往往容易坏,道理何在呢?其实就是没有考虑到LED的使用特点和对它加上保护电路。

  LED是光电半导体器件,在装配过程中容易被静电击伤。这就需要在装配过程中进行静电防护。我们发现很多生产厂家的人没有这个概念或根本不懂,这是不行的。

  LED在实际工作中是以20mA的电流为上限,但往往会由于在使用中的各种原因而造成电流增大,如果不采取保护措施,这种增大的电流超过一定的时间和幅度后LED就会损坏。

  二、造成LED损坏的原因

  1、供电电压的突然升高。让供电电源电压突然升高的原因就很多了,例如电源的质量问题,或者用户的不当使用等等原因都可能让供电的电源电压突然升高。

  2、线路中某个元件或印制线条或其它导线的短路而形成LED供电通路的局部短路,使这个地方的电压增高。

  3、某个LED因为自身的质量原因损坏因而形成短路,它原有的电压降就转嫁到其它LED上。

  4、灯具内的温度过高,使LED的特性变坏。

  5、灯具内部进了水,水是导电的。

  6、在装配的时候没有做好防静电的工作,使LED的内部已经被静电所伤害。尽管施加的是正常电压和电流值,也是极易造成LED的损坏。

  这些原因都会造成LED电流的明显大幅上升,很快LED的芯片就会因为过热而被烧毁。根据我们的经验,LED烧毁后多数是两极短路,少部分是断路。每支LED约有3.2V左右的压降,它烧毁后若是断路这串LED就不发光了。若是短路这个电压就转给了其它的LED,造成其它LED的更大电流,其它LED就会更快的被烧毁,甚至危急电源。本来是小损坏就极容易的造成大事故。LED一般安装在高处,安装的时候就不容易,要维修就更难。所以LED的保护是实际的需求,但目前没有被大家重视,也是很多人无奈没有办法处理的难题。

  三、怎么对LED来进行保护

  对LED的保护我们首先想到的是用保险管,但保险管是一次性的,而且反应速度也太慢,既效果差实际使用也很麻烦,所以保险管不适宜用于现在LED灯成品中,因为LED灯现在主要是在城市的光彩工程和亮化工程。针对这种实际的需求,我们做了大量的实验,并根据工程的要求总结出了LED保护电路要有的特点,它很苛刻:在超出正常使用电流时能立即启动保护,让LED的供电通路就被断开,使LED和电源都能得到保护,在整个灯正常后又能够自动恢复供电,不影响LED工作,关键是因为它是民用产品,所加的电路不能太复杂体积不能太大,成本要低。这些要求都是互相矛盾,互相制约的,实现起来很困难。

  首先应该确定选用哪种保护电路和保护器件。

  1、我们可以选择使用瞬态电压抑制二极管(简称TVS)。瞬态电压抑制二极管是一种二极管形式的高效能保护器件。当它的两极受到反向瞬态高能量冲击时,能以10的负12次方秒极短时间的速度,使自己两极间的高阻立即降低为低阻,吸收高达数千瓦的浪涌功率,把两极间的电压箝位在一个预定的电压值,有效的保护了电子线路中的精密元器件。瞬态电压抑制二极管具有响应时间快、瞬态功率大、漏电流低、击穿电压偏差一致性好、箝位电压较易控制、无损坏极限、体积小等优点。

  但是在实际使用中发现不是很理想。首先是要寻找满足要求电压值的TVS器件很不容易。TVS器件主要应用于防雷和避雷,以及220V以上的过电压吸收等,而LED灯的供电电压一般是24V或12V,这种电压值的TVS成品很少,试验不好进行。同时我们知道:LED光珠的损坏主要是因为电流过大使芯片内部过热造成的。TVS只能探测过电压不能探测过电流。过电压肯定是过电流的原因,但是要选择合适的电压保护点很难掌握,这种器件就无法生产也就很难在实际中使用。

  2、我们可以选择自恢复保险管。自恢复保险管又称为高分子聚合物正温度热敏电阻PTC,是由聚合物与导电粒子等构成。在经过特殊加工后,导电粒子在聚合物中构成链状导电通路。当正常工作电流通过(或元件处于正常环境温度)时,PTC自恢复保险丝呈低阻状态;当电路中有异常过电流通过(或环境温度升高)时,大电流(或环境温度升高)所产生的热量使聚合物迅速膨胀,也就切断了导电粒子所构成的导电通路,PTC自恢复保险丝呈高阻状态;当电路中过电流(超温状态)消失后,聚合物冷却,体积恢复正常,其中导电粒子又重新构成导电通路,PTC自恢复保险丝又呈初始的低阻状态。在正常工作状态自恢复保险管的发热很小,在异常工作状态它的发热很高阻值就很大,也就限制了通过它的电流,从而起到了保护作用。它的体积小,成本低,可反复使用,实现了保护的自动启动自动退出;它是固态封装耐冲击不容易被损坏;我们在实际的测试中发现:由于它是热敏感器件,受温度的影响很大,由于PTC封装在灯具的内部,光珠肯定要发热就要影响PTC的工作性能。对已经确定的灯具可以通过试验来选择PTC,比较可靠的使用方法是让它远离发热的灯珠。

  在具体的电路中,有两种方式可供使用时选择:

  1、分路保护。一般LED灯是分成很多串接支路。比如24V电压,我们都是用7支LED光珠相串接再加一支电阻构成,电流一般为17~19mA,根据需要我们可以选择7的整数倍光珠来组合成一支整灯。我们可以在每个支路的前面加一支PTC元件分别进行保护。这种方式的好处是精确性高,保护的可靠性好。

  2、总体保护。在所有光珠的前面加接一支PTC元件,对整灯进行保护。这种方式的好处是简单,不占体积。我们一般是选用这种方式。就家用产品来说,这种保护在实际使用中的结果还是令人满意的。

  PTC的选用很讲究,我们都是通过很长时间的实验才摸索出了较为准确的对应数值。


123下一页

本文导航

  • 第 1 页:LED灯静电防护术延长LED灯寿命
  • 第 2 页:LED的静电防护
  • 第 3 页:如何控制静电放电?
实现更紧凑的热沉。此外,其平均值等于固定的LED标称电流值乘以脉宽调制驱动信号的占空比。脉宽调制调光频率范围从100次/Hz到10次/kHz,可在维持低成本的前提下。

联系资料

中山市中艾电子有限公司
所在地区:
广东省 中山市

粤ICP备12063784号-4

声明:本站信息均来自互联网或由用户自行发布,本站不对以上信息的真实性、准确性、合法性负责,如果有侵犯到您的利益,请您来函告知我们,我们将尽快删除